Definitions num thy 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
primeDef prime(a) == a = 0 & (a ~ 1) & (b,c:a | bc  a | b  a | c)
Thm* a:. prime(a Prop
assocedDef a ~ b == a | b & b | a
Thm* a,b:. (a ~ b Prop
coprimeDef CoPrime(a,b) == GCD(a;b;1)
Thm* a,b:. CoPrime(a,b Prop
dividesDef b | a == c:a = bc
Thm* a,b:. (a | b Prop
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
notDef A == A  False
Thm* A:Prop. (A Prop

About:
intnatural_numbermultiplyequalmemberpropimpliesand
orfalseallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions num thy 1 Sections StandardLIB Doc