| Some definitions of interest. |
|
divides | Def b | a == c:. a = bc |
| | Thm* a,b:. (a | b) Prop |
|
preorder | Def Preorder(T;x,y.R(x;y)) == Refl(T;x,y.R(x;y)) & (Trans x,y:T. R(x;y)) |
| | Thm* T:Type, R:(TTProp). Preorder(T;x,y.R(x,y)) Prop |
|
refl | Def Refl(T;x,y.E(x;y)) == a:T. E(a;a) |
| | Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop |
|
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c) |
| | Thm* T:Type, E:(TTProp). (Trans x,y:T. E(x,y)) Prop |