Definitions num thy 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
dividesDef b | a == c:a = bc
Thm* a,b:. (a | b Prop
geDef ij == ji
Thm* i,j:. (ij Prop
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
int_nzeroDef  == {i:i  0 }
Thm*   Type
natDef  == {i:| 0i }
Thm*   Type
nat_plusDef  == {i:| 0<i }
Thm*   Type
notDef A == A  False
Thm* A:Prop. (A Prop

About:
intnatural_numbermultiplyless_thansetuniverseequalmemberprop
impliesandfalseallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions num thy 1 Sections StandardLIB Doc