| Some definitions of interest. |
|
divides | Def b | a == c:. a = bc |
| | Thm* a,b:. (a | b) Prop |
|
equiv_rel | Def EquivRel x,y:T. E(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop |
|
preorder | Def Preorder(T;x,y.R(x;y)) == Refl(T;x,y.R(x;y)) & (Trans x,y:T. R(x;y)) |
| | Thm* T:Type, R:(TTProp). Preorder(T;x,y.R(x,y)) Prop |
|
symmetrize | Def Symmetrize(x,y.R(x;y);a;b) == R(a;b) & R(b;a) |
| | Thm* T:Type{j}, R:(TTProp{i}), a,b:T. Symmetrize(x,y.R(x,y);a;b) Prop{i} |