Thms relation autom Sections AutomataTheory Doc

NOTE: EquivRel(A)(R(_1;_2)) is alpha-equivalent to EquivRel x,y:A. R(x;y).

equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)

Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

int_upper Def {i...} == {j:| ij }

Thm* n:. {n...} Type

trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)

Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop

sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)

Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop

refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)

Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmember
less_thanintanduniversefunctionset