Thm* n:{1...}, A:Type, R:(A
A
Prop).
(
n ~ A)
(EquivRel x,y:A. x R y)
(
x,y:A. Dec(x R y))
(
m:
(n+1).
m ~ (x,y:A//(x R y)))
quotient_of_finite
Thm* f:(A
B), R:(B
B
Prop).
Bij(A; B; f)
(EquivRel x,y:B. x R y)
(
F:((x,y:A//(x R_f y))
(x,y:B//(x R y))).
Bij(x,y:A//(x R_f y); x,y:B//(x R y); F))
quotient_1_1_corr
Thm* f:(A
B), R:(B
B
Prop).
(EquivRel x,y:B. x R y)
(EquivRel x,y:A. x R_f y)
preima_of_equiv_rel
Thm* R:(T
T
Prop).
(EquivRel x,y:T. x R y)
(
Q:((x,y:T//(x R y))
(x,y:T//(x R y))
Prop).
(EquivRel u,v:x,y:T//(x R y). u Q v)
((x,y:T//(x Q y)) ~ (u,v:(x,y:T//(x R y))//(u Q v))))
quo_of_quo
Thm* n:{1...}, E:(
n
n
Prop).
(EquivRel x,y:
n. x E y) & (
x,y:
n. Dec(x E y))
(
m:
(n+1).
m ~ (i,j:
n//(i E j)))
quotient_of_nsubn
Thm* n:{1...}, m:
n, E:(
n
n
Prop).
(EquivRel x,y:
n. x E y)
(EquivRel x,y:
m. x E y)
rest_equi_rel
Thm* R:(T
T
Prop).
(EquivRel x,y:T. x R y)
(
Q:((x,y:T//(x R y))
(x,y:T//(x R y))
Prop).
(EquivRel u,v:x,y:T//(x R y). u Q v)
(EquivRel x,y:T. x Q y))
incl_aux6_quo
Thm* E:(T
T
Prop).
(EquivRel x,y:T. x E y)
(
x,y:T. x = y
x = y
u,v:T//(u E v))
incl_aux5_quo
Thm* n:{1...}, E:(
n
n
Prop).
(EquivRel i,j:
n. i E j)
(
x:i,j:
n//(i E j).
x = n-1
i,j:
n//(i E j)
x
i,j:
(n-1)//(i E j))
incl_aux4_quo
Thm* n:{1...}, m:
n, E:(
n
n
Prop).
(EquivRel i,j:
n. i E j)
(
x,y:i,j:
m//(i E j). x = y
i,j:
n//(i E j)
x = y)
incl_aux3_quo
Thm* n:{1...}, m:
n, E:(
n
n
Prop).
(EquivRel x,y:
n. x E y)
(
z:x,y:
m//(x E y). z
x,y:
n//(x E y))
incl_aux2_quo