relation autom Sections AutomataTheory Doc

Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)

Thm* n:{1...}, A:Type, R:(AAProp). (n ~ A) (EquivRel x,y:A. x R y) (x,y:A. Dec(x R y)) (m:(n+1). m ~ (x,y:A//(x R y))) quotient_of_finite

Thm* f:(AB), R:(BBProp). Bij(A; B; f) (EquivRel x,y:B. x R y) (F:((x,y:A//(x R_f y))(x,y:B//(x R y))). Bij(x,y:A//(x R_f y); x,y:B//(x R y); F)) quotient_1_1_corr

Thm* f:(AB), R:(BBProp). (EquivRel x,y:B. x R y) (EquivRel x,y:A. x R_f y) preima_of_equiv_rel

Thm* R:(TTProp). (EquivRel x,y:T. x R y) (Q:((x,y:T//(x R y))(x,y:T//(x R y))Prop). (EquivRel u,v:x,y:T//(x R y). u Q v) ((x,y:T//(x Q y)) ~ (u,v:(x,y:T//(x R y))//(u Q v)))) quo_of_quo

Thm* n:{1...}, E:(nnProp). (EquivRel x,y:n. x E y) & (x,y:n. Dec(x E y)) (m:(n+1). m ~ (i,j:n//(i E j))) quotient_of_nsubn

Thm* n:{1...}, m:n, E:(nnProp). (EquivRel x,y:n. x E y) (EquivRel x,y:m. x E y) rest_equi_rel

Thm* R:(TTProp). (EquivRel x,y:T. x R y) (Q:((x,y:T//(x R y))(x,y:T//(x R y))Prop). (EquivRel u,v:x,y:T//(x R y). u Q v) (EquivRel x,y:T. x Q y)) incl_aux6_quo

Thm* E:(TTProp). (EquivRel x,y:T. x E y) (x,y:T. x = y x = y u,v:T//(u E v)) incl_aux5_quo

Thm* n:{1...}, E:(nnProp). (EquivRel i,j:n. i E j) (x:i,j:n//(i E j). x = n-1 i,j:n//(i E j) x i,j:(n-1)//(i E j)) incl_aux4_quo

Thm* n:{1...}, m:n, E:(nnProp). (EquivRel i,j:n. i E j) (x,y:i,j:m//(i E j). x = y i,j:n//(i E j) x = y) incl_aux3_quo

Thm* n:{1...}, m:n, E:(nnProp). (EquivRel x,y:n. x E y) (z:x,y:m//(x E y). z x,y:n//(x E y)) incl_aux2_quo

In prior sections: rel 1 quot 1