sequent falsification Sections ClassicalProps(jlc) Doc

valuation Def (F under a) == (letrec val f = case f: x (a(x)); p val(p); pq val(p) val(q); pq val(p) val(q); pq val(p) val(q); ) (F)

Thm* a:Assignment, F:Formula. (F under a)

K_imp Def p q == case p: 3 3; 3 case q: 3 3; 3 3; 3 3;; 3 q;

Thm* p,q:. p q

K_or Def p q == case p: 3 q; 3 case q: 3 3; 3 3; 3 3;; 3 3;

Thm* p,q:. p q

K_and Def p q == case p: 3 3; 3 case q: 3 3; 3 3; 3 3;; 3 q;

Thm* p,q:. p q

K_not Def p == case p: 3 3; 3 3; 3 3;

Thm* p:. p

formula_case Def case F: x varC(x); p1 notC(p1); p2p3 andC(p2;p3); p4p5 orC(p4;p5); p6p7 impC(p6;p7); == InjCase(F; x. varC(x); F. InjCase(F; p1. notC(p1); F. InjCase(F; x. x/p2,p3.andC(p2;p3); F. InjCase(F; x. x/p4,p5.orC(p4;p5), x/p6,p7.impC(p6;p7)))))

letrec_body Def = b == b

letrec_arg Def x b(x) (x) == b(x)

letrec Def (letrec f b(f)) == b((letrec f b(f)) ) (recursive)

Three_1 Def 3 == inr(inl())

Thm* 3

Three_2 Def 3 == inr(inr())

Thm* 3

Three_case Def case x: 3 case0; 3 case1; 3 case2; == InjCase(x; zero. case0; one_or_two. InjCase(one_or_two; one. case1; two. case2))

Thm* t:Type{i}, t':Type{j}, t'':Type{k}, c:t, c':t', c'':t''. case 3: 3 c; 3 c'; 3 c''; t

Thm* t:Type{i}, t':Type{j}, t'':Type{k}, c:t, c':t', c'':t''. case 3: 3 c'; 3 c''; 3 c; t''

Thm* t:Type{i}, t':Type{j}, t'':Type{k}, c:t, c':t', c'':t''. case 3: 3 c; 3 c'; 3 c''; t''

Three_0 Def 3 == inl()

Thm* 3

About:
!abstractioninlitmemberdecideall
universeinrrecursive_def_noticeapplyspread