sqequal 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def x:AB(x) == x:AB(x)

is mentioned by

Thm* b:. (b ~ true (b ~ false)[bool_cases_sqequal]
Thm* x,y:Atom. (x=yAtom ~ false x = y[eq_atom_eq_false_elim_sqequal]
Thm* x,y:Atom. (x=yAtom ~ true x = y[eq_atom_eq_true_elim_sqequal]
Thm* i,j:. ((i<j) ~ false i<j[lt_int_eq_false_elim_sqequal]
Thm* i,j:. ((i<j) ~ true i<j[lt_int_eq_true_elim_sqequal]
Thm* i,j:. ((i=j) ~ false i  j[eq_int_eq_false_elim_sqequal]
Thm* i,j:. ((i=j) ~ true i = j[eq_int_eq_true_elim_sqequal]
Thm* x,y:Atom. x=yAtom = false  x = y[eq_atom_eq_false_elim]
Thm* x,y:Atom. x=yAtom = true  x = y[eq_atom_eq_true_elim]
Thm* i,j:. (i<j) = false  i<j[lt_int_eq_false_elim]
Thm* i,j:. (i<j) = true  i<j[lt_int_eq_true_elim]
Thm* i,j:i = j  ((i=j) ~ false)[eq_int_eq_false_intro]
Thm* i,j:i = j  ((i=j) ~ true)[eq_int_eq_true_intro]
Thm* b:b = false  (b ~ false)[bool_sim_false]
Thm* b:b = true  (b ~ true)[bool_sim_true]
Def SQType(T) == x,y:Tx = y  {x ~ y}[sq_type]

In prior sections: core well fnd int 1 bool 1

Try larger context: StandardLIB IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

sqequal 1 Sections StandardLIB Doc