Step
*
of Lemma
refl_cl_sp_cancel
∀[T:Type]. ∀[r:T ⟶ T ⟶ ℙ]. (dec_binrel(T;x,y:T. x = y ∈ T)
⇒ refl(T;r)
⇒ (r\\00B8) <≡>{T} r supposing anti_sym(T;r))
BY
{ ((RepD THENM AntiSymConcl) THENA Auto) }
1
1. [T] : Type
2. [r] : T ⟶ T ⟶ ℙ
3. dec_binrel(T;x,y:T. x = y ∈ T)@i
4. refl(T;r)@i
5. anti_sym(T;r)
⊢ (r\\00B8) ≡>{T} r
2
1. [T] : Type
2. [r] : T ⟶ T ⟶ ℙ
3. dec_binrel(T;x,y:T. x = y ∈ T)@i
4. refl(T;r)@i
5. anti_sym(T;r)
⊢ r ≡>{T} (r\\00B8)
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[r:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
(dec\_binrel(T;x,y:T. x = y) {}\mRightarrow{} refl(T;r) {}\mRightarrow{} (r\mbackslash{}\msupzero{}) <\mequiv{}>\{T\} r supposing anti\_sym(T;r))
By
Latex:
((RepD THENM AntiSymConcl) THENA Auto)
Home
Index