Nuprl Lemma : refl_cl_sp_cancel
∀[T:Type]. ∀[r:T ⟶ T ⟶ ℙ].  (dec_binrel(T;x,y:T. x = y ∈ T) ⇒ refl(T;r) ⇒ (r\\00B8) <≡>{T} r supposing anti_sym(T;r))
Proof
Definitions occuring in Statement : 
s_part: E\, 
refl_cl: Eo, 
xxanti_sym: anti_sym(T;R), 
xxrefl: refl(T;E), 
dec_binrel: dec_binrel(T;r), 
ab_binrel: x,y:T. E[x; y], 
binrel_eqv: E <≡>{T} E', 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
xxanti_sym: anti_sym(T;R), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
binrel_le_antisymmetry, 
refl_cl_wf, 
s_part_wf, 
xxanti_sym_wf, 
xxrefl_wf, 
dec_binrel_wf, 
ab_binrel_wf, 
equal_wf, 
refl_cl_sp_le_rel, 
rel_le_refl_cl_sp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
applyEquality, 
universeEquality, 
because_Cache, 
rename, 
lemma_by_obid, 
isectElimination, 
independent_functionElimination, 
functionEquality, 
cumulativity, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (dec\_binrel(T;x,y:T.  x  =  y)  {}\mRightarrow{}  refl(T;r)  {}\mRightarrow{}  (r\mbackslash{}\msupzero{})  <\mequiv{}>\{T\}  r  supposing  anti\_sym(T;r))
Date html generated:
2016_05_15-PM-00_02_02
Last ObjectModification:
2015_12_26-PM-11_25_46
Theory : gen_algebra_1
Home
Index