Nuprl Lemma : refl_cl_sp_cancel

[T:Type]. ∀[r:T ⟶ T ⟶ ℙ].  (dec_binrel(T;x,y:T. y ∈ T)  refl(T;r)  (r\\00B8) <≡>{T} supposing anti_sym(T;r))


Proof




Definitions occuring in Statement :  s_part: E\ refl_cl: Eo xxanti_sym: anti_sym(T;R) xxrefl: refl(T;E) dec_binrel: dec_binrel(T;r) ab_binrel: x,y:T. E[x; y] binrel_eqv: E <≡>{T} E' uimplies: supposing a uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q uimplies: supposing a member: t ∈ T xxanti_sym: anti_sym(T;R) anti_sym: AntiSym(T;x,y.R[x; y]) all: x:A. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  binrel_le_antisymmetry refl_cl_wf s_part_wf xxanti_sym_wf xxrefl_wf dec_binrel_wf ab_binrel_wf equal_wf refl_cl_sp_le_rel rel_le_refl_cl_sp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis applyEquality universeEquality because_Cache rename lemma_by_obid isectElimination independent_functionElimination functionEquality cumulativity independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (dec\_binrel(T;x,y:T.  x  =  y)  {}\mRightarrow{}  refl(T;r)  {}\mRightarrow{}  (r\mbackslash{}\msupzero{})  <\mequiv{}>\{T\}  r  supposing  anti\_sym(T;r))



Date html generated: 2016_05_15-PM-00_02_02
Last ObjectModification: 2015_12_26-PM-11_25_46

Theory : gen_algebra_1


Home Index