Nuprl Lemma : rel_le_refl_cl_sp

[T:Type]. ∀[r:T ⟶ T ⟶ ℙ].  (dec_binrel(T;x,y:T. y ∈ T)  r ≡>{T} (r\\00B8) supposing anti_sym(T;r))


Proof




Definitions occuring in Statement :  s_part: E\ refl_cl: Eo xxanti_sym: anti_sym(T;R) dec_binrel: dec_binrel(T;r) ab_binrel: x,y:T. E[x; y] binrel_le: E ≡>{T} E' uimplies: supposing a uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  s_part: E\ refl_cl: Eo binrel_le: E ≡>{T} E' xxanti_sym: anti_sym(T;R) dec_binrel: dec_binrel(T;r) anti_sym: AntiSym(T;x,y.R[x; y]) ab_binrel: x,y:T. E[x; y] uall: [x:A]. B[x] implies:  Q uimplies: supposing a member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q and: P ∧ Q cand: c∧ B not: ¬A false: False guard: {T}
Lemmas referenced :  all_wf equal_wf decidable_wf and_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis applyEquality universeEquality because_Cache rename lemma_by_obid isectElimination functionEquality cumulativity unionElimination inlFormation inrFormation independent_pairFormation independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (dec\_binrel(T;x,y:T.  x  =  y)  {}\mRightarrow{}  r  \mequiv{}>\{T\}  (r\mbackslash{}\msupzero{})  supposing  anti\_sym(T;r))



Date html generated: 2016_05_15-PM-00_01_57
Last ObjectModification: 2015_12_26-PM-11_25_55

Theory : gen_algebra_1


Home Index