Nuprl Lemma : binrel_le_antisymmetry
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R ≡>{T} R') 
⇒ (R' ≡>{T} R) 
⇒ (R <≡>{T} R'))
Proof
Definitions occuring in Statement : 
binrel_le: E ≡>{T} E'
, 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
binrel_eqv: E <≡>{T} E'
, 
binrel_le: E ≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
implies_antisymmetry, 
subtype_rel_self, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
dependent_functionElimination, 
Error :universeIsType, 
instantiate, 
universeEquality, 
because_Cache, 
Error :inhabitedIsType, 
Error :functionIsType
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  \mequiv{}>\{T\}  R')  {}\mRightarrow{}  (R'  \mequiv{}>\{T\}  R)  {}\mRightarrow{}  (R  <\mequiv{}>\{T\}  R'))
Date html generated:
2019_06_20-PM-02_02_24
Last ObjectModification:
2019_01_10-PM-09_36_19
Theory : relations2
Home
Index