Nuprl Lemma : binrel_le_antisymmetry

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R ≡>{T} R')  (R' ≡>{T} R)  (R <≡>{T} R'))


Proof




Definitions occuring in Statement :  binrel_le: E ≡>{T} E' binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  binrel_eqv: E <≡>{T} E' binrel_le: E ≡>{T} E' uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B prop:
Lemmas referenced :  implies_antisymmetry subtype_rel_self istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality independent_functionElimination hypothesis dependent_functionElimination Error :universeIsType,  instantiate universeEquality because_Cache Error :inhabitedIsType,  Error :functionIsType

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  \mequiv{}>\{T\}  R')  {}\mRightarrow{}  (R'  \mequiv{}>\{T\}  R)  {}\mRightarrow{}  (R  <\mequiv{}>\{T\}  R'))



Date html generated: 2019_06_20-PM-02_02_24
Last ObjectModification: 2019_01_10-PM-09_36_19

Theory : relations2


Home Index