Nuprl Lemma : implies_antisymmetry
∀[P,Q:ℙ].  ((P ⇒ Q) ⇒ (Q ⇒ P) ⇒ (P ⇐⇒ Q))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
functionEquality, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    ((P  {}\mRightarrow{}  Q)  {}\mRightarrow{}  (Q  {}\mRightarrow{}  P)  {}\mRightarrow{}  (P  \mLeftarrow{}{}\mRightarrow{}  Q))
Date html generated:
2019_06_20-AM-11_17_43
Last ObjectModification:
2018_09_26-AM-10_25_05
Theory : core_2
Home
Index