Nuprl Lemma : s_part_wf
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ]. (E\ ∈ T ⟶ T ⟶ ℙ)
Proof
Definitions occuring in Statement :
s_part: E\
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
s_part: E\
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
prop: ℙ
Lemmas referenced :
and_wf,
not_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lambdaEquality,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
applyEquality,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
cumulativity,
universeEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[T:Type]. \mforall{}[E:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (E\mbackslash{} \mmember{} T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{})
Date html generated:
2016_05_15-PM-00_01_34
Last ObjectModification:
2015_12_26-PM-11_26_09
Theory : gen_algebra_1
Home
Index