Step
*
of Lemma
xxconnex_iff_trichot
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
((∀a,b:T. Dec(R a b))
⇒ (connex(T;R)
⇐⇒ {∀a,b:T. (((R\) a b) ∨ ((R↔) a b) ∨ ((R\) b a))}))
BY
{ AssertLemma `connex_iff_trichot` [] }
1
1. ∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
((∀a,b:T. Dec(R[a;b]))
⇒ (Connex(T;x,y.R[x;y])
⇐⇒ {∀a,b:T. (strict_part(x,y.R[x;y];a;b) ∨ Symmetrize(x,y.R[x;y];a;b) ∨ strict_part(x,y.R[x;y];b;a))}))
⊢ ∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
((∀a,b:T. Dec(R a b))
⇒ (connex(T;R)
⇐⇒ {∀a,b:T. (((R\) a b) ∨ ((R↔) a b) ∨ ((R\) b a))}))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
((\mforall{}a,b:T. Dec(R a b)) {}\mRightarrow{} (connex(T;R) \mLeftarrow{}{}\mRightarrow{} \{\mforall{}a,b:T. (((R\mbackslash{}) a b) \mvee{} ((R\mrightleftharpoons{}) a b) \mvee{} ((R\mbackslash{}) b a))\}))
By
Latex:
AssertLemma `connex\_iff\_trichot` []
Home
Index