Nuprl Lemma : xxconnex_iff_trichot

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ((∀a,b:T.  Dec(R b))  (connex(T;R) ⇐⇒ {∀a,b:T.  (((R\) b) ∨ ((Rb) ∨ ((R\) a))}))


Proof




Definitions occuring in Statement :  s_part: E\ sym_cl: E xxconnex: connex(T;R) decidable: Dec(P) uall: [x:A]. B[x] prop: guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] strict_part: strict_part(x,y.R[x; y];a;b) symmetrize: Symmetrize(x,y.R[x; y];a;b) s_part: E\ sym_cl: E xxconnex: connex(T;R)
Lemmas referenced :  connex_iff_trichot
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a,b:T.    Dec(R  a  b))  {}\mRightarrow{}  (connex(T;R)  \mLeftarrow{}{}\mRightarrow{}  \{\mforall{}a,b:T.    (((R\mbackslash{})  a  b)  \mvee{}  ((R\mrightleftharpoons{})  a  b)  \mvee{}  ((R\mbackslash{})  b  a))\}))



Date html generated: 2016_05_15-PM-00_01_51
Last ObjectModification: 2015_12_26-PM-11_25_48

Theory : gen_algebra_1


Home Index