Step
*
1
of Lemma
inverse_grp_sig_hom_shift
1. g : GrpSig
2. h : GrpSig
3. f : MonHom(g,h)
4. ∀[a1,a2:|g|]. ((f (a1 * a2)) = ((f a1) * (f a2)) ∈ |h|)
5. (f e) = e ∈ |h|
6. ∀[a:|g|]. ((f (~ a)) = (~ (f a)) ∈ |h|)
7. ∀a1,a2:|g|. (((f a1) = (f a2) ∈ |h|)
⇒ (a1 = a2 ∈ |g|))
8. ∀[x:|h|]. (((x * (~ x)) = e ∈ |h|) ∧ (((~ x) * x) = e ∈ |h|))
9. x : |g|
⊢ ((x * (~ x)) = e ∈ |g|) ∧ (((~ x) * x) = e ∈ |g|)
BY
{ ((D 0
THENM BHyp 7
THENM RWW "4 5 6" 0
THENM BHyp 8) THENA Auto) }
Latex:
Latex:
1. g : GrpSig
2. h : GrpSig
3. f : MonHom(g,h)
4. \mforall{}[a1,a2:|g|]. ((f (a1 * a2)) = ((f a1) * (f a2)))
5. (f e) = e
6. \mforall{}[a:|g|]. ((f (\msim{} a)) = (\msim{} (f a)))
7. \mforall{}a1,a2:|g|. (((f a1) = (f a2)) {}\mRightarrow{} (a1 = a2))
8. \mforall{}[x:|h|]. (((x * (\msim{} x)) = e) \mwedge{} (((\msim{} x) * x) = e))
9. x : |g|
\mvdash{} ((x * (\msim{} x)) = e) \mwedge{} (((\msim{} x) * x) = e)
By
Latex:
((D 0
THENM BHyp 7
THENM RWW "4 5 6" 0
THENM BHyp 8) THENA Auto)
Home
Index