Nuprl Lemma : inverse_grp_sig_hom_shift

[g,h:GrpSig]. ∀[f:MonHom(g,h)].
  (Inverse(|g|;*;e;~)) supposing (Inverse(|h|;*;e;~) and Inj(|g|;|h|;f) and fun_thru_1op(|g|;|h|;~;~;f))


Proof




Definitions occuring in Statement :  monoid_hom: MonHom(M1,M2) grp_inv: ~ grp_id: e grp_op: * grp_car: |g| grp_sig: GrpSig fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) inverse: Inverse(T;op;id;inv) inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a inverse: Inverse(T;op;id;inv) inject: Inj(A;B;f) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) prop: monoid_hom: MonHom(M1,M2) all: x:A. B[x] infix_ap: y implies:  Q squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  monoid_hom_properties grp_car_wf inverse_wf grp_op_wf grp_id_wf grp_inv_wf inject_wf fun_thru_1op_wf monoid_hom_wf grp_sig_wf equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination sqequalRule independent_pairEquality axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry setElimination rename independent_pairFormation dependent_functionElimination applyEquality independent_functionElimination lambdaEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].
    (Inverse(|g|;*;e;\msim{}))  supposing 
          (Inverse(|h|;*;e;\msim{})  and 
          Inj(|g|;|h|;f)  and 
          fun\_thru\_1op(|g|;|h|;\msim{};\msim{};f))



Date html generated: 2017_10_01-AM-08_14_11
Last ObjectModification: 2017_02_28-PM-01_58_36

Theory : groups_1


Home Index