Nuprl Lemma : monoid_hom_properties
∀[g,h:GrpSig]. ∀[f:MonHom(g,h)].  IsMonHom{g,h}(f)
Proof
Definitions occuring in Statement : 
monoid_hom: MonHom(M1,M2)
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
monoid_hom: MonHom(M1,M2)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
sq_stable__and, 
uall_wf, 
grp_car_wf, 
equal_wf, 
grp_op_wf, 
infix_ap_wf, 
sq_stable__uall, 
sq_stable__equal, 
squash_wf, 
grp_id_wf, 
set_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairEquality, 
functionEquality, 
productEquality
Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].    IsMonHom\{g,h\}(f)
Date html generated:
2017_10_01-AM-08_13_58
Last ObjectModification:
2017_02_28-PM-01_58_22
Theory : groups_1
Home
Index