Nuprl Lemma : monoid_hom_properties

[g,h:GrpSig]. ∀[f:MonHom(g,h)].  IsMonHom{g,h}(f)


Proof




Definitions occuring in Statement :  monoid_hom: MonHom(M1,M2) monoid_hom_p: IsMonHom{M1,M2}(f) grp_sig: GrpSig uall: [x:A]. B[x]
Definitions unfolded in proof :  monoid_hom_p: IsMonHom{M1,M2}(f) monoid_hom: MonHom(M1,M2) fun_thru_2op: FunThru2op(A;B;opa;opb;f) uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] prop: implies:  Q sq_stable: SqStable(P) squash: T
Lemmas referenced :  sq_stable__and uall_wf grp_car_wf equal_wf grp_op_wf infix_ap_wf sq_stable__uall sq_stable__equal squash_wf grp_id_wf set_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setElimination thin rename extract_by_obid sqequalHypSubstitution isectElimination productElimination hypothesisEquality hypothesis lambdaEquality applyEquality functionExtensionality isect_memberEquality equalityTransitivity equalitySymmetry because_Cache independent_functionElimination dependent_functionElimination axiomEquality lambdaFormation imageMemberEquality baseClosed imageElimination independent_pairEquality functionEquality productEquality

Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].    IsMonHom\{g,h\}(f)



Date html generated: 2017_10_01-AM-08_13_58
Last ObjectModification: 2017_02_28-PM-01_58_22

Theory : groups_1


Home Index