Step
*
2
of Lemma
binomial
.....upcase.....
1. r : CRng
2. a : |r|
3. b : |r|
4. n : ℤ
5. 0 < n
6. ((a +r b) ↑r (n - 1)) = (Σ(r) 0 ≤ i < (n - 1) + 1. choose(n - 1;i) ⋅r ((a ↑r i) * (b ↑r (n - 1 - i)))) ∈ |r|
⊢ ((a +r b) ↑r n) = (Σ(r) 0 ≤ i < n + 1. choose(n;i) ⋅r ((a ↑r i) * (b ↑r (n - i)))) ∈ |r|
BY
{ RWH (LemmaC `rng_sum_unroll_hi`) 0
THENM RWH (LemmaC `rng_sum_unroll_lo`) 0
THENM RW IntNormC 0
THENA Auto' }
1
1. r : CRng
2. a : |r|
3. b : |r|
4. n : ℤ
5. 0 < n
6. ((a +r b) ↑r (n - 1)) = (Σ(r) 0 ≤ i < (n - 1) + 1. choose(n - 1;i) ⋅r ((a ↑r i) * (b ↑r (n - 1 - i)))) ∈ |r|
⊢ ((a +r b) ↑r n)
= (((choose(n;0) ⋅r ((a ↑r 0) * (b ↑r n))) +r (Σ(r) 1 ≤ i < n. choose(n;i) ⋅r ((a ↑r i) * (b ↑r (n - i)))))
+r
(choose(n;n) ⋅r ((a ↑r n) * (b ↑r 0))))
∈ |r|
Latex:
Latex:
.....upcase.....
1. r : CRng
2. a : |r|
3. b : |r|
4. n : \mBbbZ{}
5. 0 < n
6. ((a +r b) \muparrow{}r (n - 1))
= (\mSigma{}(r) 0
\mleq{} i
< (n - 1) + 1
choose(n - 1;i) \mcdot{}r ((a \muparrow{}r i) * (b \muparrow{}r (n - 1 - i))))
\mvdash{} ((a +r b) \muparrow{}r n) = (\mSigma{}(r) 0 \mleq{} i < n + 1. choose(n;i) \mcdot{}r ((a \muparrow{}r i) * (b \muparrow{}r (n - i))))
By
Latex:
RWH (LemmaC `rng\_sum\_unroll\_hi`) 0
THENM RWH (LemmaC `rng\_sum\_unroll\_lo`) 0
THENM RW IntNormC 0
THENA Auto'
Home
Index