Nuprl Lemma : binomial

[r:CRng]. ∀[a,b:|r|]. ∀[n:ℕ].
  (((a +r b) ↑n) (r) 0 ≤ i < 1. choose(n;i) ⋅((a ↑i) (b ↑(n i)))) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_nat_op: n ⋅e rng_nexp: e ↑n choose: choose(n;i) rng_sum: rng_sum crng: CRng rng_times: * rng_plus: +r rng_car: |r| nat: uall: [x:A]. B[x] infix_ap: y subtract: m add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: crng: CRng rng: Rng rev_implies:  Q iff: ⇐⇒ Q true: True or: P ∨ Q decidable: Dec(P) guard: {T} lelt: i ≤ j < k so_apply: x[s] int_iseg: {i...j} int_seg: {i..j-} subtype_rel: A ⊆B less_than': less_than'(a;b) le: A ≤ B so_lambda: λ2x.t[x] infix_ap: y squash: T subtract: m bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 ycomb: Y choose: choose(n;i) cand: c∧ B eq_int: (i =z j) bnot: ¬bb sq_type: SQType(T) assert: b bor: p ∨bq band: p ∧b q nequal: a ≠ b ∈  nat_plus: +
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 istype-nat rng_car_wf crng_wf iff_weakening_equal int_seg_wf int_term_value_add_lemma int_term_value_subtract_lemma itermAdd_wf itermSubtract_wf subtract_wf int_seg_subtype_nat rng_nexp_wf rng_times_wf infix_ap_wf int_formula_prop_not_lemma intformnot_wf satisfiable-full-omega-tt decidable__le int_seg_properties lelt_wf subtype_rel_sets le_wf false_wf choose_wf rng_nat_op_wf rng_sum_unroll_unit rng_plus_wf rng_nexp_zero true_wf squash_wf equal_wf zero-add minus-zero assert_of_bnot assert_of_band eqff_to_assert bnot_thru_bor not_wf bnot_wf band_wf assert_of_eq_int assert_of_bor eqtt_to_assert iff_weakening_uiff or_wf assert_wf equal-wf-base iff_transitivity bool_wf eq_int_wf bor_wf rng_wf nat_wf rng_one_wf rng_nat_op_one int_formula_prop_eq_lemma intformeq_wf decidable__equal_int rng_times_one istype-universe subtract-add-cancel istype-le rng_sum_unroll_hi decidable__lt istype-false subtype_rel_self rng_sum_unroll_lo add-subtract-cancel add-associates minus-add minus-minus minus-one-mul add-zero add-swap add-commutes add-mul-special zero-mul int_subtype_base istype-assert bfalse_wf bool_subtype_base bool_cases_sqequal subtype_base_sq assert-bnot neg_assert_of_eq_int testxxx_lemma btrue_wf rng_sum_wf set_subtype_base intformor_wf int_formula_prop_or_lemma add_nat_wf add-is-int-iff rng_nat_op_add rng_sum_plus rng_nexp_unroll rng_times_over_plus rng_plus_assoc rng_plus_comm rng_plus_ac_1 rng_times_sum_r rng_sum_shift not-lt-2 add_functionality_wrt_le le-add-cancel rng_times_nat_op_r rng_times_assoc crng_times_ac_1 crng_times_comm itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType isectIsTypeImplies baseClosed imageMemberEquality computeAll voidEquality isect_memberEquality dependent_pairFormation unionElimination applyLambdaEquality productElimination setEquality productEquality intEquality lambdaFormation dependent_set_memberEquality addEquality because_Cache universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality impliesFunctionality orFunctionality equalityElimination instantiate dependent_set_memberEquality_alt closedConclusion setIsType productIsType multiplyEquality baseApply inlFormation_alt equalityIsType4 inrFormation_alt unionIsType promote_hyp cumulativity equalityIsType1 functionIsType pointwiseFunctionality minusEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[a,b:|r|].  \mforall{}[n:\mBbbN{}].
    (((a  +r  b)  \muparrow{}r  n)  =  (\mSigma{}(r)  0  \mleq{}  i  <  n  +  1.  choose(n;i)  \mcdot{}r  ((a  \muparrow{}r  i)  *  (b  \muparrow{}r  (n  -  i)))))



Date html generated: 2019_10_15-AM-10_34_09
Last ObjectModification: 2018_10_19-AM-09_35_16

Theory : rings_1


Home Index