Nuprl Lemma : binomial
∀[r:CRng]. ∀[a,b:|r|]. ∀[n:ℕ].
  (((a +r b) ↑r n) = (Σ(r) 0 ≤ i < n + 1. choose(n;i) ⋅r ((a ↑r i) * (b ↑r (n - i)))) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_nat_op: n ⋅r e
, 
rng_nexp: e ↑r n
, 
choose: choose(n;i)
, 
rng_sum: rng_sum, 
crng: CRng
, 
rng_times: *
, 
rng_plus: +r
, 
rng_car: |r|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
int_iseg: {i...j}
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
squash: ↓T
, 
subtract: n - m
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
ycomb: Y
, 
choose: choose(n;i)
, 
cand: A c∧ B
, 
eq_int: (i =z j)
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
bor: p ∨bq
, 
band: p ∧b q
, 
nequal: a ≠ b ∈ T 
, 
nat_plus: ℕ+
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
istype-nat, 
rng_car_wf, 
crng_wf, 
iff_weakening_equal, 
int_seg_wf, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
itermSubtract_wf, 
subtract_wf, 
int_seg_subtype_nat, 
rng_nexp_wf, 
rng_times_wf, 
infix_ap_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
lelt_wf, 
subtype_rel_sets, 
le_wf, 
false_wf, 
choose_wf, 
rng_nat_op_wf, 
rng_sum_unroll_unit, 
rng_plus_wf, 
rng_nexp_zero, 
true_wf, 
squash_wf, 
equal_wf, 
zero-add, 
minus-zero, 
assert_of_bnot, 
assert_of_band, 
eqff_to_assert, 
bnot_thru_bor, 
not_wf, 
bnot_wf, 
band_wf, 
assert_of_eq_int, 
assert_of_bor, 
eqtt_to_assert, 
iff_weakening_uiff, 
or_wf, 
assert_wf, 
equal-wf-base, 
iff_transitivity, 
bool_wf, 
eq_int_wf, 
bor_wf, 
rng_wf, 
nat_wf, 
rng_one_wf, 
rng_nat_op_one, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
rng_times_one, 
istype-universe, 
subtract-add-cancel, 
istype-le, 
rng_sum_unroll_hi, 
decidable__lt, 
istype-false, 
subtype_rel_self, 
rng_sum_unroll_lo, 
add-subtract-cancel, 
add-associates, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-zero, 
add-swap, 
add-commutes, 
add-mul-special, 
zero-mul, 
int_subtype_base, 
istype-assert, 
bfalse_wf, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
assert-bnot, 
neg_assert_of_eq_int, 
testxxx_lemma, 
btrue_wf, 
rng_sum_wf, 
set_subtype_base, 
intformor_wf, 
int_formula_prop_or_lemma, 
add_nat_wf, 
add-is-int-iff, 
rng_nat_op_add, 
rng_sum_plus, 
rng_nexp_unroll, 
rng_times_over_plus, 
rng_plus_assoc, 
rng_plus_comm, 
rng_plus_ac_1, 
rng_times_sum_r, 
rng_sum_shift, 
not-lt-2, 
add_functionality_wrt_le, 
le-add-cancel, 
rng_times_nat_op_r, 
rng_times_assoc, 
crng_times_ac_1, 
crng_times_comm, 
itermMultiply_wf, 
int_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies, 
baseClosed, 
imageMemberEquality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
dependent_pairFormation, 
unionElimination, 
applyLambdaEquality, 
productElimination, 
setEquality, 
productEquality, 
intEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
addEquality, 
because_Cache, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
impliesFunctionality, 
orFunctionality, 
equalityElimination, 
instantiate, 
dependent_set_memberEquality_alt, 
closedConclusion, 
setIsType, 
productIsType, 
multiplyEquality, 
baseApply, 
inlFormation_alt, 
equalityIsType4, 
inrFormation_alt, 
unionIsType, 
promote_hyp, 
cumulativity, 
equalityIsType1, 
functionIsType, 
pointwiseFunctionality, 
minusEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[a,b:|r|].  \mforall{}[n:\mBbbN{}].
    (((a  +r  b)  \muparrow{}r  n)  =  (\mSigma{}(r)  0  \mleq{}  i  <  n  +  1.  choose(n;i)  \mcdot{}r  ((a  \muparrow{}r  i)  *  (b  \muparrow{}r  (n  -  i)))))
Date html generated:
2019_10_15-AM-10_34_09
Last ObjectModification:
2018_10_19-AM-09_35_16
Theory : rings_1
Home
Index