Nuprl Lemma : rng_sum_wf

[r:Rng]. ∀[p,q:ℤ]. ∀[E:{p..q-} ⟶ |r|].  (r) p ≤ i < q. E[i] ∈ |r|)


Proof




Definitions occuring in Statement :  rng_sum: rng_sum rng: Rng rng_car: |r| int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  rng_sum: rng_sum uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B grp: Group{i} mon: Mon imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) rng: Rng
Lemmas referenced :  mon_itop_wf add_grp_of_rng_wf_a grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf rng_car_wf int_seg_wf add_grp_of_rng_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache intEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[p,q:\mBbbZ{}].  \mforall{}[E:\{p..q\msupminus{}\}  {}\mrightarrow{}  |r|].    (\mSigma{}(r)  p  \mleq{}  i  <  q.  E[i]  \mmember{}  |r|)



Date html generated: 2016_05_15-PM-00_22_02
Last ObjectModification: 2015_12_27-AM-00_01_46

Theory : rings_1


Home Index