Nuprl Lemma : rng_sum_wf
∀[r:Rng]. ∀[p,q:ℤ]. ∀[E:{p..q-} ⟶ |r|].  (Σ(r) p ≤ i < q. E[i] ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_sum: rng_sum, 
rng: Rng
, 
rng_car: |r|
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
rng_sum: rng_sum, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
grp: Group{i}
, 
mon: Mon
, 
imon: IMonoid
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
rng: Rng
Lemmas referenced : 
mon_itop_wf, 
add_grp_of_rng_wf_a, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
rng_car_wf, 
int_seg_wf, 
add_grp_of_rng_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
intEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[p,q:\mBbbZ{}].  \mforall{}[E:\{p..q\msupminus{}\}  {}\mrightarrow{}  |r|].    (\mSigma{}(r)  p  \mleq{}  i  <  q.  E[i]  \mmember{}  |r|)
Date html generated:
2016_05_15-PM-00_22_02
Last ObjectModification:
2015_12_27-AM-00_01_46
Theory : rings_1
Home
Index