Nuprl Lemma : rng_nexp_zero

[r:Rng]. ∀[e:|r|].  ((e ↑0) 1 ∈ |r|)


Proof




Definitions occuring in Statement :  rng_nexp: e ↑n rng: Rng rng_one: 1 rng_car: |r| uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rng_nexp: e ↑n mul_mon_of_rng: r↓xmn grp_car: |g| pi1: fst(t) grp_id: e pi2: snd(t) rng: Rng
Lemmas referenced :  mon_nat_op_zero mul_mon_of_rng_wf_c rng_car_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality axiomEquality setElimination rename

Latex:
\mforall{}[r:Rng].  \mforall{}[e:|r|].    ((e  \muparrow{}r  0)  =  1)



Date html generated: 2016_05_15-PM-00_27_17
Last ObjectModification: 2015_12_26-PM-11_59_00

Theory : rings_1


Home Index