Nuprl Lemma : rng_nexp_zero
∀[r:Rng]. ∀[e:|r|].  ((e ↑r 0) = 1 ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_nexp: e ↑r n
, 
rng: Rng
, 
rng_one: 1
, 
rng_car: |r|
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng_nexp: e ↑r n
, 
mul_mon_of_rng: r↓xmn
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_id: e
, 
pi2: snd(t)
, 
rng: Rng
Lemmas referenced : 
mon_nat_op_zero, 
mul_mon_of_rng_wf_c, 
rng_car_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename
Latex:
\mforall{}[r:Rng].  \mforall{}[e:|r|].    ((e  \muparrow{}r  0)  =  1)
Date html generated:
2016_05_15-PM-00_27_17
Last ObjectModification:
2015_12_26-PM-11_59_00
Theory : rings_1
Home
Index