Nuprl Lemma : mul_mon_of_rng_wf_c
∀[r:Rng]. (r↓xmn ∈ IMonoid)
Proof
Definitions occuring in Statement :
mul_mon_of_rng: r↓xmn
,
rng: Rng
,
imon: IMonoid
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
mul_mon_of_rng: r↓xmn
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
and: P ∧ Q
,
rng: Rng
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
mon: Mon
,
imon: IMonoid
Lemmas referenced :
rng_wf,
rng_all_properties,
mk_mon,
rng_car_wf,
rng_eq_wf,
rng_le_wf,
rng_times_wf,
rng_one_wf,
subtype_rel_self,
imon_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
axiomEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
lemma_by_obid,
isectElimination,
thin,
hypothesisEquality,
productElimination,
setElimination,
rename,
lambdaEquality,
independent_isectElimination,
applyEquality,
instantiate
Latex:
\mforall{}[r:Rng]. (r\mdownarrow{}xmn \mmember{} IMonoid)
Date html generated:
2016_05_15-PM-00_21_03
Last ObjectModification:
2015_12_27-AM-00_02_32
Theory : rings_1
Home
Index