Nuprl Lemma : mul_mon_of_rng_wf_c
∀[r:Rng]. (r↓xmn ∈ IMonoid)
Proof
Definitions occuring in Statement : 
mul_mon_of_rng: r↓xmn
, 
rng: Rng
, 
imon: IMonoid
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
mul_mon_of_rng: r↓xmn
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
rng: Rng
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
mon: Mon
, 
imon: IMonoid
Lemmas referenced : 
rng_wf, 
rng_all_properties, 
mk_mon, 
rng_car_wf, 
rng_eq_wf, 
rng_le_wf, 
rng_times_wf, 
rng_one_wf, 
subtype_rel_self, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
setElimination, 
rename, 
lambdaEquality, 
independent_isectElimination, 
applyEquality, 
instantiate
Latex:
\mforall{}[r:Rng].  (r\mdownarrow{}xmn  \mmember{}  IMonoid)
Date html generated:
2016_05_15-PM-00_21_03
Last ObjectModification:
2015_12_27-AM-00_02_32
Theory : rings_1
Home
Index