Nuprl Lemma : mul_mon_of_rng_wf_c

[r:Rng]. (r↓xmn ∈ IMonoid)


Proof




Definitions occuring in Statement :  mul_mon_of_rng: r↓xmn rng: Rng imon: IMonoid uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  mul_mon_of_rng: r↓xmn uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q rng: Rng uimplies: supposing a subtype_rel: A ⊆B mon: Mon imon: IMonoid
Lemmas referenced :  rng_wf rng_all_properties mk_mon rng_car_wf rng_eq_wf rng_le_wf rng_times_wf rng_one_wf subtype_rel_self imon_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality productElimination setElimination rename lambdaEquality independent_isectElimination applyEquality instantiate

Latex:
\mforall{}[r:Rng].  (r\mdownarrow{}xmn  \mmember{}  IMonoid)



Date html generated: 2016_05_15-PM-00_21_03
Last ObjectModification: 2015_12_27-AM-00_02_32

Theory : rings_1


Home Index