Nuprl Lemma : rng_all_properties
∀[r:Rng]. (Assoc(|r|;+r) ∧ Ident(|r|;+r;0) ∧ Inverse(|r|;+r;0;-r) ∧ Assoc(|r|;*) ∧ Ident(|r|;*;1) ∧ BiLinear(|r|;+r;*))
Proof
Definitions occuring in Statement : 
rng: Rng
, 
rng_one: 1
, 
rng_times: *
, 
rng_minus: -r
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
, 
bilinear: BiLinear(T;pl;tm)
, 
ident: Ident(T;op;id)
, 
inverse: Inverse(T;op;id;inv)
, 
assoc: Assoc(T;op)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
, 
and: P ∧ Q
, 
assoc: Assoc(T;op)
, 
ident: Ident(T;op;id)
, 
inverse: Inverse(T;op;id;inv)
, 
bilinear: BiLinear(T;pl;tm)
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
monoid_p: IsMonoid(T;op;id)
, 
group_p: IsGroup(T;op;id;inv)
, 
cand: A c∧ B
Lemmas referenced : 
rng_properties, 
rng_car_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation
Latex:
\mforall{}[r:Rng]
    (Assoc(|r|;+r)
    \mwedge{}  Ident(|r|;+r;0)
    \mwedge{}  Inverse(|r|;+r;0;-r)
    \mwedge{}  Assoc(|r|;*)
    \mwedge{}  Ident(|r|;*;1)
    \mwedge{}  BiLinear(|r|;+r;*))
Date html generated:
2016_05_15-PM-00_20_35
Last ObjectModification:
2015_12_27-AM-00_02_49
Theory : rings_1
Home
Index