Nuprl Lemma : mon_nat_op_zero

[g:IMonoid]. ∀[e:|g|].  ((0 ⋅ e) e ∈ |g|)


Proof




Definitions occuring in Statement :  mon_nat_op: n ⋅ e imon: IMonoid grp_id: e grp_car: |g| uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  mon_nat_op: n ⋅ e
Lemmas referenced :  nat_op_zero
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalRule sqequalReflexivity sqequalSubstitution sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[g:IMonoid].  \mforall{}[e:|g|].    ((0  \mcdot{}  e)  =  e)



Date html generated: 2016_05_15-PM-00_16_33
Last ObjectModification: 2015_12_26-PM-11_39_21

Theory : groups_1


Home Index