Nuprl Lemma : mon_nat_op_zero
∀[g:IMonoid]. ∀[e:|g|].  ((0 ⋅ e) = e ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_nat_op: n ⋅ e
, 
imon: IMonoid
, 
grp_id: e
, 
grp_car: |g|
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
mon_nat_op: n ⋅ e
Lemmas referenced : 
nat_op_zero
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[g:IMonoid].  \mforall{}[e:|g|].    ((0  \mcdot{}  e)  =  e)
Date html generated:
2016_05_15-PM-00_16_33
Last ObjectModification:
2015_12_26-PM-11_39_21
Theory : groups_1
Home
Index