Nuprl Lemma : nat_op_zero

[g:IMonoid]. ∀[e:|g|].  (0 x(*;e) e ∈ |g|)


Proof




Definitions occuring in Statement :  nat_op: x(op;id) e imon: IMonoid grp_id: e grp_op: * grp_car: |g| uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T imon: IMonoid nat_op: x(op;id) e squash: T prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  grp_car_wf imon_wf equal_wf squash_wf true_wf itop_unroll_base int_seg_wf grp_id_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality independent_isectElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[g:IMonoid].  \mforall{}[e:|g|].    (0  x(*;e)  e  =  e)



Date html generated: 2017_10_01-AM-08_15_59
Last ObjectModification: 2017_02_28-PM-02_00_52

Theory : groups_1


Home Index