Nuprl Lemma : rng_times_assoc
∀[r:Rng]. ∀[a,b,c:|r|].  ((a * (b * c)) = ((a * b) * c) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng: Rng
, 
rng_times: *
, 
rng_car: |r|
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mul_mon_of_rng: r↓xmn
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
rng: Rng
Lemmas referenced : 
mon_assoc, 
mul_mon_of_rng_wf_c, 
rng_car_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename
Latex:
\mforall{}[r:Rng].  \mforall{}[a,b,c:|r|].    ((a  *  (b  *  c))  =  ((a  *  b)  *  c))
Date html generated:
2016_05_15-PM-00_21_29
Last ObjectModification:
2015_12_27-AM-00_02_07
Theory : rings_1
Home
Index