Nuprl Lemma : rng_times_assoc

[r:Rng]. ∀[a,b,c:|r|].  ((a (b c)) ((a b) c) ∈ |r|)


Proof




Definitions occuring in Statement :  rng: Rng rng_times: * rng_car: |r| uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mul_mon_of_rng: r↓xmn grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) rng: Rng
Lemmas referenced :  mon_assoc mul_mon_of_rng_wf_c rng_car_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality axiomEquality setElimination rename

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b,c:|r|].    ((a  *  (b  *  c))  =  ((a  *  b)  *  c))



Date html generated: 2016_05_15-PM-00_21_29
Last ObjectModification: 2015_12_27-AM-00_02_07

Theory : rings_1


Home Index