Nuprl Lemma : rng_sum_plus

[r:Rng]. ∀[a,b:ℤ].
  ∀[E,F:{a..b-} ⟶ |r|].  ((Σ(r) a ≤ i < b. E[i] +r F[i]) ((Σ(r) a ≤ i < b. E[i]) +r (r) a ≤ i < b. F[i])) ∈ |r|) 
  supposing a ≤ b


Proof




Definitions occuring in Statement :  rng_sum: rng_sum rng: Rng rng_plus: +r rng_car: |r| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} mon: Mon iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q rng_sum: rng_sum add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) rng: Rng
Lemmas referenced :  mon_itop_op add_grp_of_rng_wf_b subtype_rel_sets grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf int_seg_wf rng_car_wf le_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule instantiate setEquality cumulativity setElimination rename because_Cache lambdaEquality independent_isectElimination lambdaFormation isect_memberEquality axiomEquality functionEquality equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:\mBbbZ{}].
    \mforall{}[E,F:\{a..b\msupminus{}\}  {}\mrightarrow{}  |r|].
        ((\mSigma{}(r)  a  \mleq{}  i  <  b.  E[i]  +r  F[i])  =  ((\mSigma{}(r)  a  \mleq{}  i  <  b.  E[i])  +r  (\mSigma{}(r)  a  \mleq{}  i  <  b.  F[i]))) 
    supposing  a  \mleq{}  b



Date html generated: 2018_05_21-PM-03_15_04
Last ObjectModification: 2018_05_19-AM-08_08_01

Theory : rings_1


Home Index