Nuprl Lemma : mon_itop_op

[g:IAbMonoid]. ∀[a,b:ℤ].
  ∀[E,F:{a..b-} ⟶ |g|].  ((Π a ≤ i < b. E[i] F[i]) ((Π a ≤ i < b. E[i]) (Π a ≤ i < b. F[i])) ∈ |g|) 
  supposing a ≤ b


Proof




Definitions occuring in Statement :  mon_itop: Π lb ≤ i < ub. E[i] iabmonoid: IAbMonoid grp_op: * grp_car: |g| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iabmonoid: IAbMonoid imon: IMonoid prop: all: x:A. B[x] so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q guard: {T} int_seg: {i..j-} infix_ap: y decidable: Dec(P) or: P ∨ Q squash: T true: True subtype_rel: A ⊆B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top lelt: i ≤ j < k
Lemmas referenced :  int_seg_wf grp_car_wf le_wf iabmonoid_wf int_le_to_int_upper_uniform uall_wf equal_wf mon_itop_wf infix_ap_wf grp_op_wf int_upper_wf int_upper_ind_uniform decidable__equal_int squash_wf true_wf mon_itop_unroll_base iff_weakening_equal grp_id_wf mon_ident mon_itop_unroll_hi int_upper_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_le_lemma int_formula_prop_wf subtract_wf decidable__le itermSubtract_wf itermConstant_wf int_term_value_subtract_lemma int_term_value_constant_lemma lelt_wf mon_assoc abmonoid_ac_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality hypothesis functionEquality extract_by_obid setElimination rename equalityTransitivity equalitySymmetry intEquality because_Cache dependent_functionElimination lambdaEquality applyEquality functionExtensionality productElimination independent_functionElimination instantiate lambdaFormation unionElimination imageElimination universeEquality independent_isectElimination natural_numberEquality imageMemberEquality baseClosed dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality

Latex:
\mforall{}[g:IAbMonoid].  \mforall{}[a,b:\mBbbZ{}].
    \mforall{}[E,F:\{a..b\msupminus{}\}  {}\mrightarrow{}  |g|].
        ((\mPi{}  a  \mleq{}  i  <  b.  E[i]  *  F[i])  =  ((\mPi{}  a  \mleq{}  i  <  b.  E[i])  *  (\mPi{}  a  \mleq{}  i  <  b.  F[i]))) 
    supposing  a  \mleq{}  b



Date html generated: 2017_10_01-AM-08_16_23
Last ObjectModification: 2017_02_28-PM-02_01_23

Theory : groups_1


Home Index