Nuprl Lemma : int_upper_ind_uniform

i:ℤ. ∀[E:{i...} ⟶ ℙ{u}]. ((∀[k:{i...}]. ((∀[j:{i..k-}]. E[j])  E[k]))  {∀[k:{i...}]. E[k]})


Proof




Definitions occuring in Statement :  int_upper: {i...} int_seg: {i..j-} uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q guard: {T} member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s] int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q uwellfounded: uWellFnd(A;x,y.R[x; y])
Lemmas referenced :  uall_wf int_upper_wf int_seg_wf subtype_rel_sets lelt_wf le_wf int_upper_uwell_founded less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality cumulativity universeEquality sqequalRule functionEquality because_Cache setElimination rename intEquality independent_isectElimination setEquality productElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}[E:\{i...\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  ((\mforall{}[k:\{i...\}].  ((\mforall{}[j:\{i..k\msupminus{}\}].  E[j])  {}\mRightarrow{}  E[k]))  {}\mRightarrow{}  \{\mforall{}[k:\{i...\}].  E[k]\})



Date html generated: 2016_05_14-AM-07_26_14
Last ObjectModification: 2015_12_26-PM-01_27_56

Theory : int_2


Home Index