Nuprl Lemma : int_upper_ind_uniform
∀i:ℤ. ∀[E:{i...} ⟶ ℙ{u}]. ((∀[k:{i...}]. ((∀[j:{i..k-}]. E[j]) 
⇒ E[k])) 
⇒ {∀[k:{i...}]. E[k]})
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
int_upper: {i...}
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uwellfounded: uWellFnd(A;x,y.R[x; y])
Lemmas referenced : 
uall_wf, 
int_upper_wf, 
int_seg_wf, 
subtype_rel_sets, 
lelt_wf, 
le_wf, 
int_upper_uwell_founded, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
sqequalRule, 
functionEquality, 
because_Cache, 
setElimination, 
rename, 
intEquality, 
independent_isectElimination, 
setEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}[E:\{i...\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  ((\mforall{}[k:\{i...\}].  ((\mforall{}[j:\{i..k\msupminus{}\}].  E[j])  {}\mRightarrow{}  E[k]))  {}\mRightarrow{}  \{\mforall{}[k:\{i...\}].  E[k]\})
Date html generated:
2016_05_14-AM-07_26_14
Last ObjectModification:
2015_12_26-PM-01_27_56
Theory : int_2
Home
Index