Nuprl Lemma : rng_nat_op_add
∀[r:Rng]. ∀[e:|r|]. ∀[a,b:ℕ]. (((a + b) ⋅r e) = ((a ⋅r e) +r (b ⋅r e)) ∈ |r|)
Proof
Definitions occuring in Statement :
rng_nat_op: n ⋅r e
,
rng: Rng
,
rng_plus: +r
,
rng_car: |r|
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
add: n + m
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
grp: Group{i}
,
mon: Mon
,
imon: IMonoid
,
prop: ℙ
,
rng_nat_op: n ⋅r e
,
add_grp_of_rng: r↓+gp
,
grp_car: |g|
,
pi1: fst(t)
,
grp_op: *
,
pi2: snd(t)
,
rng: Rng
Lemmas referenced :
mon_nat_op_add,
add_grp_of_rng_wf_a,
grp_sig_wf,
monoid_p_wf,
grp_car_wf,
grp_op_wf,
grp_id_wf,
inverse_wf,
grp_inv_wf,
nat_wf,
rng_car_wf,
rng_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
applyEquality,
sqequalRule,
lambdaEquality,
setElimination,
rename,
setEquality,
cumulativity,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[r:Rng]. \mforall{}[e:|r|]. \mforall{}[a,b:\mBbbN{}]. (((a + b) \mcdot{}r e) = ((a \mcdot{}r e) +r (b \mcdot{}r e)))
Date html generated:
2016_05_15-PM-00_27_25
Last ObjectModification:
2015_12_26-PM-11_58_54
Theory : rings_1
Home
Index