Nuprl Lemma : rng_nexp_unroll

[r:Rng]. ∀[n:ℕ+]. ∀[e:|r|].  ((e ↑n) ((e ↑(n 1)) e) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_nexp: e ↑n rng: Rng rng_times: * rng_car: |r| nat_plus: + uall: [x:A]. B[x] infix_ap: y subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rng_nexp: e ↑n mul_mon_of_rng: r↓xmn grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) rng: Rng
Lemmas referenced :  mon_nat_op_unroll mul_mon_of_rng_wf_c rng_car_wf nat_plus_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality axiomEquality setElimination rename

Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[e:|r|].    ((e  \muparrow{}r  n)  =  ((e  \muparrow{}r  (n  -  1))  *  e))



Date html generated: 2016_05_15-PM-00_27_20
Last ObjectModification: 2015_12_26-PM-11_59_06

Theory : rings_1


Home Index