Nuprl Lemma : mon_nat_op_unroll

[g:IMonoid]. ∀[n:ℕ+]. ∀[e:|g|].  ((n ⋅ e) (((n 1) ⋅ e) e) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_nat_op: n ⋅ e imon: IMonoid grp_op: * grp_car: |g| nat_plus: + uall: [x:A]. B[x] infix_ap: y subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mon_nat_op: n ⋅ e nat_op: x(op;id) e imon: IMonoid nat_plus: + uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_seg_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties itop_unroll_hi imon_wf nat_plus_wf grp_car_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache natural_numberEquality independent_isectElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[g:IMonoid].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[e:|g|].    ((n  \mcdot{}  e)  =  (((n  -  1)  \mcdot{}  e)  *  e))



Date html generated: 2016_05_15-PM-00_16_37
Last ObjectModification: 2016_01_15-PM-11_04_00

Theory : groups_1


Home Index