Nuprl Lemma : mon_nat_op_unroll
∀[g:IMonoid]. ∀[n:ℕ+]. ∀[e:|g|].  ((n ⋅ e) = (((n - 1) ⋅ e) * e) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_nat_op: n ⋅ e
, 
imon: IMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
subtract: n - m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mon_nat_op: n ⋅ e
, 
nat_op: n x(op;id) e
, 
imon: IMonoid
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_seg_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
itop_unroll_hi, 
imon_wf, 
nat_plus_wf, 
grp_car_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[g:IMonoid].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[e:|g|].    ((n  \mcdot{}  e)  =  (((n  -  1)  \mcdot{}  e)  *  e))
Date html generated:
2016_05_15-PM-00_16_37
Last ObjectModification:
2016_01_15-PM-11_04_00
Theory : groups_1
Home
Index