Nuprl Lemma : rng_nat_op_one
∀[r:Rng]. ∀[e:|r|].  ((1 ⋅r e) = e ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_nat_op: n ⋅r e, 
rng: Rng, 
rng_car: |r|, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
grp: Group{i}, 
mon: Mon, 
imon: IMonoid, 
prop: ℙ, 
rng_nat_op: n ⋅r e, 
add_grp_of_rng: r↓+gp, 
grp_car: |g|, 
pi1: fst(t), 
rng: Rng
Lemmas referenced : 
mon_nat_op_one, 
add_grp_of_rng_wf_a, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
rng_car_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
cumulativity, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[e:|r|].    ((1  \mcdot{}r  e)  =  e)
Date html generated:
2016_05_15-PM-00_27_22
Last ObjectModification:
2015_12_26-PM-11_58_57
Theory : rings_1
Home
Index