Nuprl Lemma : comb_for_rng_when_wf

λr,b,p,z. (when b. p) ∈ r:Rng ⟶ b:𝔹 ⟶ p:|r| ⟶ (↓True) ⟶ |r|


Proof




Definitions occuring in Statement :  rng_when: rng_when rng: Rng rng_car: |r| bool: 𝔹 squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: rng: Rng
Lemmas referenced :  rng_when_wf squash_wf true_wf rng_car_wf bool_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry setElimination rename

Latex:
\mlambda{}r,b,p,z.  (when  b.  p)  \mmember{}  r:Rng  {}\mrightarrow{}  b:\mBbbB{}  {}\mrightarrow{}  p:|r|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |r|



Date html generated: 2016_05_15-PM-00_28_54
Last ObjectModification: 2015_12_26-PM-11_58_20

Theory : rings_1


Home Index