Step
*
1
2
of Lemma
mul-monomials-ringeq
1. r : CRng
2. m5 : ℤ-o
3. m6 : {vs:ℤ List| sorted(vs)}
4. m3 : ℤ-o
5. m4 : {vs:ℤ List| sorted(vs)}
6. f : ℤ ⟶ |r|
7. ring_term_value(f;imonomial-term(<1, merge-int(m6;m4)>)) = (ring_term_value(f;imonomial-term(<1, m6>)) * ring_term_va\000Clue(f;imonomial-term(<1, m4>))) ∈ |r|
⊢ (int-to-ring(r;m5 * m3) * (ring_term_value(f;imonomial-term(<1, m6>)) * ring_term_value(f;imonomial-term(<1, m4>))))
= ((int-to-ring(r;m5) * ring_term_value(f;imonomial-term(<1, m6>))) * (int-to-ring(r;m3) * ring_term_value(f;imonomial-t\000Cerm(<1, m4>))))
∈ |r|
BY
{ ((RWO "int-to-ring-mul" 0 THENA Auto)
THEN GenConclTerms Auto [⌜ring_term_value(f;imonomial-term(<1, m6>))⌝
;⌜ring_term_value(f;imonomial-term(<1, m4>))⌝
; int-to-ring(r;m5)
; int-to-ring(r;m3)]⋅
THEN All Thin) }
1
1. r : CRng
2. v : |r|
3. v1 : |r|
4. v2 : |r|
5. v3 : |r|
⊢ ((v2 * v3) * (v * v1)) = ((v2 * v) * (v3 * v1)) ∈ |r|
Latex:
Latex:
1. r : CRng
2. m5 : \mBbbZ{}\msupminus{}\msupzero{}
3. m6 : \{vs:\mBbbZ{} List| sorted(vs)\}
4. m3 : \mBbbZ{}\msupminus{}\msupzero{}
5. m4 : \{vs:\mBbbZ{} List| sorted(vs)\}
6. f : \mBbbZ{} {}\mrightarrow{} |r|
7. ring\_term\_value(f;imonomial-term(ə, merge-int(m6;m4)>)) = (ring\_term\_value(f;imonomial-term(ə, \000Cm6>)) * ring\_term\_value(f;imonomial-term(ə, m4>)))
\mvdash{} (int-to-ring(r;m5 * m3) * (ring\_term\_value(f;imonomial-term(ə, m6>)) * ring\_term\_value(f;imonomia\000Cl-term(ə, m4>))))
= ((int-to-ring(r;m5) * ring\_term\_value(f;imonomial-term(ə, m6>))) * (int-to-ring(r;m3) * ring\_term\000C\_value(f;imonomial-term(ə, m4>))))
By
Latex:
((RWO "int-to-ring-mul" 0 THENA Auto)
THEN GenConclTerms Auto [\mkleeneopen{}ring\_term\_value(f;imonomial-term(ə, m6>))\mkleeneclose{}
;\mkleeneopen{}ring\_term\_value(f;imonomial-term(ə, m4>))\mkleeneclose{}
; int-to-ring(r;m5)
; int-to-ring(r;m3)]\mcdot{}
THEN All Thin)
Home
Index