Nuprl Lemma : mul-monomials-ringeq
∀[r:CRng]. ∀[m1,m2:iMonomial()].  imonomial-term(mul-monomials(m1;m2)) ≡ imonomial-term(m1) (*) imonomial-term(m2)
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2, 
crng: CRng, 
mul-monomials: mul-monomials(m1;m2), 
imonomial-term: imonomial-term(m), 
iMonomial: iMonomial(), 
itermMultiply: left (*) right, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
iMonomial: iMonomial(), 
mul-monomials: mul-monomials(m1;m2), 
has-value: (a)↓, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
int_nzero: ℤ-o, 
ringeq_int_terms: t1 ≡ t2, 
all: ∀x:A. B[x], 
top: Top, 
crng: CRng, 
rng: Rng, 
true: True, 
squash: ↓T, 
prop: ℙ, 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
merge-int: merge-int(as;bs), 
imonomial-term: imonomial-term(m), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
ring_term_value: ring_term_value(f;t), 
insert-int: insert-int(x;l), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
itermConstant: "const", 
int_term_ind: int_term_ind, 
itermMultiply: left (*) right, 
itermVar: vvar, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
less_than': less_than'(a;b), 
not: ¬A, 
false: False, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
list_wf, 
list-value-type, 
merge-int-accum_wf, 
ring_term_value_mul_lemma, 
rng_car_wf, 
rng_times_wf, 
iMonomial_wf, 
crng_wf, 
equal_wf, 
squash_wf, 
true_wf, 
imonomial-term-linear-ringeq, 
subtype_rel_self, 
iff_weakening_equal, 
merge-int-accum-sq, 
int-to-ring_wf, 
ring_term_value_wf, 
imonomial-term_wf, 
list_induction, 
all_wf, 
merge-int_wf, 
infix_ap_wf, 
reduce_nil_lemma, 
list_accum_nil_lemma, 
ring_term_value_const_lemma, 
list_accum_wf, 
int_term_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
rng_times_one, 
int-to-ring-one, 
reduce_cons_lemma, 
insert-int_wf, 
cons_wf, 
list_ind_nil_lemma, 
list_accum_cons_lemma, 
crng_times_comm, 
list_ind_cons_lemma, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
imonomial-cons-ringeq, 
crng_times_ac_1, 
int-to-ring-mul, 
rng_times_assoc
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
sqequalRule, 
callbyvalueReduce, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
because_Cache, 
natural_numberEquality, 
isect_memberFormation, 
lambdaEquality, 
axiomEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_functionElimination, 
independent_pairEquality, 
functionExtensionality, 
unionElimination, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
cumulativity, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[r:CRng].  \mforall{}[m1,m2:iMonomial()].
    imonomial-term(mul-monomials(m1;m2))  \mequiv{}  imonomial-term(m1)  (*)  imonomial-term(m2)
Date html generated:
2018_05_21-PM-03_17_03
Last ObjectModification:
2018_05_19-AM-08_08_12
Theory : rings_1
Home
Index