Nuprl Lemma : insert-int_wf

[T:Type]. ∀[x:T]. ∀[l:T List].  (insert-int(x;l) ∈ List) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  insert-int: insert-int(x;l) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: subtype_rel: A ⊆B or: P ∨ Q insert-int: insert-int(x;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  has-value: (a)↓ bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list list-cases list_ind_nil_lemma cons_wf nil_wf product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_ind_cons_lemma le_int_wf bool_wf eqtt_to_assert assert_of_le_int value-type-has-value list-value-type eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache unionElimination isect_memberEquality voidEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality intEquality instantiate equalityElimination callbyvalueReduce dependent_pairFormation universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[l:T  List].    (insert-int(x;l)  \mmember{}  T  List)  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2017_04_14-AM-08_34_36
Last ObjectModification: 2017_02_27-PM-03_22_13

Theory : list_0


Home Index