Nuprl Lemma : insert-int_wf
∀[T:Type]. ∀[x:T]. ∀[l:T List]. (insert-int(x;l) ∈ T List) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement :
insert-int: insert-int(x;l)
,
list: T List
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
guard: {T}
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
or: P ∨ Q
,
insert-int: insert-int(x;l)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
squash: ↓T
,
sq_stable: SqStable(P)
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
le: A ≤ B
,
not: ¬A
,
less_than': less_than'(a;b)
,
true: True
,
decidable: Dec(P)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
,
nil: []
,
it: ⋅
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
bool: 𝔹
,
unit: Unit
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
has-value: (a)↓
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
nat_properties,
less_than_transitivity1,
less_than_irreflexivity,
ge_wf,
less_than_wf,
equal-wf-T-base,
nat_wf,
colength_wf_list,
list-cases,
list_ind_nil_lemma,
cons_wf,
nil_wf,
product_subtype_list,
spread_cons_lemma,
sq_stable__le,
le_antisymmetry_iff,
add_functionality_wrt_le,
add-associates,
add-zero,
zero-add,
le-add-cancel,
decidable__le,
false_wf,
not-le-2,
condition-implies-le,
minus-add,
minus-one-mul,
minus-one-mul-top,
add-commutes,
le_wf,
equal_wf,
subtract_wf,
not-ge-2,
less-iff-le,
minus-minus,
add-swap,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
list_ind_cons_lemma,
le_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_le_int,
value-type-has-value,
list-value-type,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
list_wf,
subtype_rel_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
sqequalRule,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
independent_functionElimination,
voidElimination,
lambdaEquality,
dependent_functionElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
cumulativity,
applyEquality,
because_Cache,
unionElimination,
isect_memberEquality,
voidEquality,
promote_hyp,
hypothesis_subsumption,
productElimination,
applyLambdaEquality,
imageMemberEquality,
baseClosed,
imageElimination,
addEquality,
dependent_set_memberEquality,
independent_pairFormation,
minusEquality,
intEquality,
instantiate,
equalityElimination,
callbyvalueReduce,
dependent_pairFormation,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[x:T]. \mforall{}[l:T List]. (insert-int(x;l) \mmember{} T List) supposing T \msubseteq{}r \mBbbZ{}
Date html generated:
2017_04_14-AM-08_34_36
Last ObjectModification:
2017_02_27-PM-03_22_13
Theory : list_0
Home
Index