Nuprl Lemma : merge-int-accum_wf
∀[as,bs:ℤ List].  (merge-int-accum(as;bs) ∈ ℤ List)
Proof
Definitions occuring in Statement : 
merge-int-accum: merge-int-accum(as;bs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
merge-int-accum: merge-int-accum(as;bs)
, 
so_lambda: λ2x y.t[x; y]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
Lemmas referenced : 
eager-accum_wf, 
list_wf, 
insert-int_wf, 
subtype_rel_self, 
list-valueall-type, 
int-valueall-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[as,bs:\mBbbZ{}  List].    (merge-int-accum(as;bs)  \mmember{}  \mBbbZ{}  List)
Date html generated:
2017_09_29-PM-05_50_39
Last ObjectModification:
2017_05_03-PM-00_17_06
Theory : list_0
Home
Index