Nuprl Lemma : merge-int-accum_wf

[as,bs:ℤ List].  (merge-int-accum(as;bs) ∈ ℤ List)


Proof




Definitions occuring in Statement :  merge-int-accum: merge-int-accum(as;bs) list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T merge-int-accum: merge-int-accum(as;bs) so_lambda: λ2y.t[x; y] uimplies: supposing a so_apply: x[s1;s2]
Lemmas referenced :  eager-accum_wf list_wf insert-int_wf subtype_rel_self list-valueall-type int-valueall-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache hypothesis hypothesisEquality lambdaEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].    (merge-int-accum(as;bs)  \mmember{}  \mBbbZ{}  List)



Date html generated: 2017_09_29-PM-05_50_39
Last ObjectModification: 2017_05_03-PM-00_17_06

Theory : list_0


Home Index