Nuprl Lemma : imonomial-term-linear-ringeq
∀r:Rng. ∀f:ℤ ⟶ |r|. ∀ws:ℤ List. ∀c:ℤ.  (ring_term_value(f;imonomial-term(<c, ws>)) = (int-to-ring(r;c) * ring_term_valu\000Ce(f;imonomial-term(<1, ws>))) ∈ |r|)
Proof
Definitions occuring in Statement : 
ring_term_value: ring_term_value(f;t), 
int-to-ring: int-to-ring(r;n), 
rng: Rng, 
rng_times: *, 
rng_car: |r|, 
imonomial-term: imonomial-term(m), 
list: T List, 
infix_ap: x f y, 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
pair: <a, b>, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
true: True, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
rng: Rng, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
squash: ↓T, 
member: t ∈ T, 
imonomial-term: imonomial-term(m), 
all: ∀x:A. B[x]
Lemmas referenced : 
rng_wf, 
list_wf, 
ring_term_value_const_lemma, 
iff_weakening_equal, 
itermVar_wf, 
itermMultiply_wf, 
int_term_wf, 
list_accum_wf, 
ring_term_value_wf, 
int-to-ring_wf, 
rng_times_wf, 
infix_ap_wf, 
itermConstant_wf, 
imonomial-ringeq-lemma, 
rng_car_wf, 
true_wf, 
squash_wf, 
equal_wf
Rules used in proof : 
functionEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
intEquality, 
functionExtensionality, 
because_Cache, 
dependent_functionElimination, 
rename, 
setElimination, 
universeEquality, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
imageElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
thin, 
applyEquality, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}r:Rng.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  |r|.  \mforall{}ws:\mBbbZ{}  List.  \mforall{}c:\mBbbZ{}.
    (ring\_term\_value(f;imonomial-term(<c,  ws>))  =  (int-to-ring(r;c)  *  ring\_term\_value(f;imonomial-term\000C(ə,  ws>))))
Date html generated:
2018_05_21-PM-03_16_24
Last ObjectModification:
2018_01_25-PM-02_19_31
Theory : rings_1
Home
Index