Nuprl Lemma : int-to-ring-one

[r:Rng]. (int-to-ring(r;1) 1 ∈ |r|)


Proof




Definitions occuring in Statement :  int-to-ring: int-to-ring(r;n) rng: Rng rng_one: 1 rng_car: |r| uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  int-to-ring: int-to-ring(r;n) lt_int: i <j ifthenelse: if then else fi  bfalse: ff rng_nat_op: n ⋅e mon_nat_op: n ⋅ e add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e nat_op: x(op;id) e itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y subtract: m btrue: tt uall: [x:A]. B[x] member: t ∈ T rng: Rng and: P ∧ Q
Lemmas referenced :  rng_plus_zero rng_one_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis productElimination

Latex:
\mforall{}[r:Rng].  (int-to-ring(r;1)  =  1)



Date html generated: 2018_05_21-PM-03_14_44
Last ObjectModification: 2018_05_19-AM-08_07_54

Theory : rings_1


Home Index