Step
*
2
1
of Lemma
p-adic-bounds
1. p : ℕ+
2. a : n:ℕ+ ⟶ ℕp^n
3. ∀n:ℕ+. ((a (n + 1)) ≡ (a n) mod p^n)
4. n : ℕ+
5. 0 ≤ ((a (n + 1)) - a n)
6. c : ℤ
7. ((a (n + 1)) - a n) = (p^n * c) ∈ ℤ
8. ¬(c ≤ (p - 1))
9. p ≤ c
10. (p^n * p) ≤ (p^n * c)
⊢ (p^n * c) ≤ (p^(n + 1) - p^n)
BY
{ (Subst' p^n * p ~ p^(n + 1) -1 THEN Auto) }
Latex:
Latex:
1. p : \mBbbN{}\msupplus{}
2. a : n:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbN{}p\^{}n
3. \mforall{}n:\mBbbN{}\msupplus{}. ((a (n + 1)) \mequiv{} (a n) mod p\^{}n)
4. n : \mBbbN{}\msupplus{}
5. 0 \mleq{} ((a (n + 1)) - a n)
6. c : \mBbbZ{}
7. ((a (n + 1)) - a n) = (p\^{}n * c)
8. \mneg{}(c \mleq{} (p - 1))
9. p \mleq{} c
10. (p\^{}n * p) \mleq{} (p\^{}n * c)
\mvdash{} (p\^{}n * c) \mleq{} (p\^{}(n + 1) - p\^{}n)
By
Latex:
(Subst' p\^{}n * p \msim{} p\^{}(n + 1) -1 THEN Auto)
Home
Index