Nuprl Lemma : p-distrib
∀[p:{2...}]. ∀[a,x,y:p-adics(p)].  ((a * x + y = a * x + a * y ∈ p-adics(p)) ∧ (x + y * a = x * a + y * a ∈ p-adics(p)))
Proof
Definitions occuring in Statement : 
p-mul: x * y
, 
p-add: x + y
, 
p-adics: p-adics(p)
, 
int_upper: {i...}
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
, 
p-adic-ring: ℤ(p)
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_times: *
, 
rng_one: 1
, 
monoid_p: IsMonoid(T;op;id)
, 
group_p: IsGroup(T;op;id;inv)
, 
bilinear: BiLinear(T;pl;tm)
, 
ident: Ident(T;op;id)
, 
assoc: Assoc(T;op)
, 
inverse: Inverse(T;op;id;inv)
, 
infix_ap: x f y
, 
comm: Comm(T;op)
, 
and: P ∧ Q
Lemmas referenced : 
p-adic-ring_wf, 
crng_properties, 
rng_properties, 
int_upper_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
productElimination, 
natural_numberEquality
Latex:
\mforall{}[p:\{2...\}].  \mforall{}[a,x,y:p-adics(p)].    ((a  *  x  +  y  =  a  *  x  +  a  *  y)  \mwedge{}  (x  +  y  *  a  =  x  *  a  +  y  *  a))
Date html generated:
2018_05_21-PM-03_20_58
Last ObjectModification:
2018_05_19-AM-08_18_07
Theory : rings_1
Home
Index