Step
*
2
1
1
1
of Lemma
pa-inv_wf
.....set predicate.....
1. p : {p:{2...}| prime(p)}
2. n : ℕ
3. x1 : if (n =z 0) then p-adics(p) else p-units(p) fi
4. ¬(n = 0 ∈ ℤ)
5. u : p-units(p)
6. x1 = u ∈ p-units(p)
7. v : p-adics(p)
8. u * v = 1(p) ∈ p-adics(p)
⊢ pa-mul(p;<n, u>;<0, p^n(p) * v>) = 1(p) ∈ padic(p)
BY
{ ((Assert ⌜pa-mul(p;<n, u>;<0, p^n(p) * v>) = bpa-norm(p;1(p)) ∈ padic(p)⌝⋅ THENM (NthHypEqTrans (-1) THEN Auto))
THEN Unfold `pa-mul` 0
THEN (BLemma `bpa-equiv-iff-norm2` THENA Auto)) }
1
1. p : {p:{2...}| prime(p)}
2. n : ℕ
3. x1 : if (n =z 0) then p-adics(p) else p-units(p) fi
4. ¬(n = 0 ∈ ℤ)
5. u : p-units(p)
6. x1 = u ∈ p-units(p)
7. v : p-adics(p)
8. u * v = 1(p) ∈ p-adics(p)
⊢ bpa-equiv(p;bpa-mul(p;<n, u>;<0, p^n(p) * v>);1(p))
Latex:
Latex:
.....set predicate.....
1. p : \{p:\{2...\}| prime(p)\}
2. n : \mBbbN{}
3. x1 : if (n =\msubz{} 0) then p-adics(p) else p-units(p) fi
4. \mneg{}(n = 0)
5. u : p-units(p)
6. x1 = u
7. v : p-adics(p)
8. u * v = 1(p)
\mvdash{} pa-mul(p;<n, u>ɘ, p\^{}n(p) * v>) = 1(p)
By
Latex:
((Assert \mkleeneopen{}pa-mul(p;<n, u>ɘ, p\^{}n(p) * v>) = bpa-norm(p;1(p))\mkleeneclose{}\mcdot{} THENM (NthHypEqTrans (-1) THEN Auto)\000C)
THEN Unfold `pa-mul` 0
THEN (BLemma `bpa-equiv-iff-norm2` THENA Auto))
Home
Index