Nuprl Lemma : ring_term_value_sub_lemma
∀r,b,a,f:Top.  (ring_term_value(f;a (-) b) ~ ring_term_value(f;a) +r (-r ring_term_value(f;b)))
Proof
Definitions occuring in Statement : 
ring_term_value: ring_term_value(f;t)
, 
rng_minus: -r
, 
rng_plus: +r
, 
itermSubtract: left (-) right
, 
top: Top
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right
, 
ring_term_value: ring_term_value(f;t)
Lemmas referenced : 
top_wf
Rules used in proof : 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}r,b,a,f:Top.    (ring\_term\_value(f;a  (-)  b)  \msim{}  ring\_term\_value(f;a)  +r  (-r  ring\_term\_value(f;b)))
Date html generated:
2018_05_21-PM-03_15_44
Last ObjectModification:
2018_01_25-PM-02_17_21
Theory : rings_1
Home
Index