Nuprl Lemma : ring_term_value_sub_lemma

r,b,a,f:Top.  (ring_term_value(f;a (-) b) ring_term_value(f;a) +r (-r ring_term_value(f;b)))


Proof




Definitions occuring in Statement :  ring_term_value: ring_term_value(f;t) rng_minus: -r rng_plus: +r itermSubtract: left (-) right top: Top infix_ap: y all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] int_term_ind: int_term_ind itermSubtract: left (-) right ring_term_value: ring_term_value(f;t)
Lemmas referenced :  top_wf
Rules used in proof :  hypothesis extract_by_obid introduction cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}r,b,a,f:Top.    (ring\_term\_value(f;a  (-)  b)  \msim{}  ring\_term\_value(f;a)  +r  (-r  ring\_term\_value(f;b)))



Date html generated: 2018_05_21-PM-03_15_44
Last ObjectModification: 2018_01_25-PM-02_17_21

Theory : rings_1


Home Index