Step
*
1
1
1
1
1
of Lemma
shift-greatest-p-zero-unit
1. p : ℕ+
2. a : p-adics(p)
3. n : ℕ+
4. ¬((a n) = 0 ∈ ℤ)
5. 0 < greatest-p-zero(n;a)
6. greatest-p-zero(n;a) ≤ n
7. ∀i:ℕ+n + 1. (((i ≤ greatest-p-zero(n;a))
⇒ ((a i) = 0 ∈ ℤ)) ∧ (greatest-p-zero(n;a) < i
⇒ (¬((a i) = 0 ∈ ℤ))))
8. (a greatest-p-zero(n;a)) = 0 ∈ ℤ
9. ¬(greatest-p-zero(n;a) = n ∈ ℤ)
10. (p-shift(p;a;greatest-p-zero(n;a)) 1) = 0 ∈ ℤ
⊢ (a (1 + greatest-p-zero(n;a))) = 0 ∈ ℤ
BY
{ RepUR ``p-shift`` -1 }
1
1. p : ℕ+
2. a : p-adics(p)
3. n : ℕ+
4. ¬((a n) = 0 ∈ ℤ)
5. 0 < greatest-p-zero(n;a)
6. greatest-p-zero(n;a) ≤ n
7. ∀i:ℕ+n + 1. (((i ≤ greatest-p-zero(n;a))
⇒ ((a i) = 0 ∈ ℤ)) ∧ (greatest-p-zero(n;a) < i
⇒ (¬((a i) = 0 ∈ ℤ))))
8. (a greatest-p-zero(n;a)) = 0 ∈ ℤ
9. ¬(greatest-p-zero(n;a) = n ∈ ℤ)
10. ((a (1 + greatest-p-zero(n;a))) ÷ p^greatest-p-zero(n;a)) = 0 ∈ ℤ
⊢ (a (1 + greatest-p-zero(n;a))) = 0 ∈ ℤ
Latex:
Latex:
1. p : \mBbbN{}\msupplus{}
2. a : p-adics(p)
3. n : \mBbbN{}\msupplus{}
4. \mneg{}((a n) = 0)
5. 0 < greatest-p-zero(n;a)
6. greatest-p-zero(n;a) \mleq{} n
7. \mforall{}i:\mBbbN{}\msupplus{}n + 1
(((i \mleq{} greatest-p-zero(n;a)) {}\mRightarrow{} ((a i) = 0)) \mwedge{} (greatest-p-zero(n;a) < i {}\mRightarrow{} (\mneg{}((a i) = 0))))
8. (a greatest-p-zero(n;a)) = 0
9. \mneg{}(greatest-p-zero(n;a) = n)
10. (p-shift(p;a;greatest-p-zero(n;a)) 1) = 0
\mvdash{} (a (1 + greatest-p-zero(n;a))) = 0
By
Latex:
RepUR ``p-shift`` -1
Home
Index