Nuprl Lemma : comb_for_set_blt_wf

λp,a,b,z. (a <b b) ∈ p:PosetSig ⟶ a:|p| ⟶ b:|p| ⟶ (↓True) ⟶ 𝔹


Proof




Definitions occuring in Statement :  set_blt: a <b b set_car: |p| poset_sig: PosetSig bool: 𝔹 squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  set_blt_wf squash_wf true_wf set_car_wf poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry

Latex:
\mlambda{}p,a,b,z.  (a  <\msubb{}  b)  \mmember{}  p:PosetSig  {}\mrightarrow{}  a:|p|  {}\mrightarrow{}  b:|p|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}



Date html generated: 2016_05_15-PM-00_04_17
Last ObjectModification: 2015_12_26-PM-11_28_40

Theory : sets_1


Home Index