Nuprl Lemma : comb_for_set_blt_wf
λp,a,b,z. (a <b b) ∈ p:PosetSig ⟶ a:|p| ⟶ b:|p| ⟶ (↓True) ⟶ 𝔹
Proof
Definitions occuring in Statement : 
set_blt: a <b b
, 
set_car: |p|
, 
poset_sig: PosetSig
, 
bool: 𝔹
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
set_blt_wf, 
squash_wf, 
true_wf, 
set_car_wf, 
poset_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry
Latex:
\mlambda{}p,a,b,z.  (a  <\msubb{}  b)  \mmember{}  p:PosetSig  {}\mrightarrow{}  a:|p|  {}\mrightarrow{}  b:|p|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}
Date html generated:
2016_05_15-PM-00_04_17
Last ObjectModification:
2015_12_26-PM-11_28_40
Theory : sets_1
Home
Index