Nuprl Lemma : set_lt_is_sp_of_leq_a
∀[p:PosetSig]. ∀[a,b:|p|].  uiff(a <p b;(a ≤ b) ∧ (¬(b ≤ a)))
Proof
Definitions occuring in Statement : 
set_lt: a <p b
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
poset_sig: PosetSig
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
strict_part: strict_part(x,y.R[x; y];a;b)
Lemmas referenced : 
set_lt_is_sp_of_leq
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[p:PosetSig].  \mforall{}[a,b:|p|].    uiff(a  <p  b;(a  \mleq{}  b)  \mwedge{}  (\mneg{}(b  \mleq{}  a)))
Date html generated:
2016_05_15-PM-00_04_24
Last ObjectModification:
2015_12_26-PM-11_28_36
Theory : sets_1
Home
Index