Nuprl Lemma : set_lt_is_sp_of_leq_a

[p:PosetSig]. ∀[a,b:|p|].  uiff(a <b;(a ≤ b) ∧ (b ≤ a)))


Proof




Definitions occuring in Statement :  set_lt: a <b set_leq: a ≤ b set_car: |p| poset_sig: PosetSig uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q
Definitions unfolded in proof :  strict_part: strict_part(x,y.R[x; y];a;b)
Lemmas referenced :  set_lt_is_sp_of_leq
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[p:PosetSig].  \mforall{}[a,b:|p|].    uiff(a  <p  b;(a  \mleq{}  b)  \mwedge{}  (\mneg{}(b  \mleq{}  a)))



Date html generated: 2016_05_15-PM-00_04_24
Last ObjectModification: 2015_12_26-PM-11_28_36

Theory : sets_1


Home Index