Nuprl Lemma : set_lt_is_sp_of_leq

[p:PosetSig]. ∀[a,b:|p|].  uiff(a <b;strict_part(x,y.x ≤ y;a;b))


Proof




Definitions occuring in Statement :  set_lt: a <b set_leq: a ≤ b set_car: |p| poset_sig: PosetSig strict_part: strict_part(x,y.R[x; y];a;b) uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a strict_part: strict_part(x,y.R[x; y];a;b) set_leq: a ≤ b infix_ap: y implies:  Q not: ¬A false: False prop: set_lt: a <b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] set_blt: a <b b iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  assert_witness set_le_wf set_leq_wf set_lt_wf set_blt_wf strict_part_wf set_car_wf poset_sig_wf and_wf not_wf assert_wf band_wf bnot_wf uiff_wf iff_transitivity iff_weakening_uiff assert_of_band assert_of_set_leq assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality lemma_by_obid applyEquality hypothesis independent_functionElimination lambdaEquality dependent_functionElimination because_Cache equalityTransitivity equalitySymmetry voidElimination independent_pairFormation lambdaFormation cumulativity addLevel independent_isectElimination impliesFunctionality

Latex:
\mforall{}[p:PosetSig].  \mforall{}[a,b:|p|].    uiff(a  <p  b;strict\_part(x,y.x  \mleq{}  y;a;b))



Date html generated: 2016_05_15-PM-00_04_22
Last ObjectModification: 2015_12_26-PM-11_28_55

Theory : sets_1


Home Index